

University of Kelaniya- Sri Lanka Faculty of Science

Centre for Distance & Continuing Education Bachelor of Science (General) Degree Examination-External May 2025

Academic Year 2022- Semester I

PURE MATHEMATICS | PMAT 36602 (Repeat)- Abstract Algebra
No. of Questions: Five (05) No. of Pages: Two (02) Time: Two (02) hours

Answer only FOUR (04) questions.

- 1. (a) If G is a group under the operation *, then prove that the **identity** of G is unique.
 - (b) Let $G = \{z \in \mathbb{C} \mid z^n = 1 \text{ for some } n \in \mathbb{Z}^+\}.$
 - i. Prove that G is a group under the usual multiplication.
 - ii. Prove that G is not a group under addition.
 - (c) If x and g are elements of the group G, prove in the usual notation that $|x| = |g^{-1}xg|$.
- 2. (a) i. Prove that if H and K are subgroups of a group G, then their intersection $H \cap K$ is also a **subgroup** of G.
 - ii. Let \mathbb{R}' denote the set of real numbers whose square is a rational number ($\mathbb{R}' = \{r \in \mathbb{R} \mid r^2 \in \mathbb{Q}\}$). Show that \mathbb{R}' is **not a subgroup** of \mathbb{R} under addition.
 - (b) i. State Lagrange's theorem.
 - ii. Prove that if G is a finite group and $x \in G$, then the order of x divides the order of G.
 - (c) Prove that if G is an abelian group, then every subgroup of G is **normal**.
- 3. (a) Let G be an abelian group. Define $\psi: G \longrightarrow G$ by $\psi(g) = g^{-1}$. Prove that ψ is a **homomorphism**.
 - (b) Let G and H be groups and let $\phi: G \longrightarrow H$ be a homomorphism. Prove that, $\phi(e_G) = e_H$, where e_G and e_H denote the identities of G and H respectively.
 - (c) i. If $\phi: G \longrightarrow H$ is an **isomorphism**, prove that G is abelian if and only if H is abelian.
 - ii. If $\phi: G \longrightarrow H$ is a homomorphism, what additional conditions on ϕ (if any) are sufficient to ensure that if G is abelian, then so is H?

Continued.

- 4. (a) i. Define a zero divisor and a unit in a ring R.
 - ii. Find all zero divisors and units (if any) in the ring $\mathbb Z$ of integers.
 - (b) Let $M_2(\mathbb{Z}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z} \}$ be the set of $n \times n$ matrices with entries from \mathbb{Z} .
 - i. Prove that $M_2(\mathbb{Z})$ is a ring, with identity 1 (in the usual notation), under the usual addition and multiplication of matrices.
 - ii. Find the set of units in $M_2(\mathbb{Z})$.
 - (c) Let R be a ring. Assume a, b and c are elements R where a is not a zero divisor. If ab = ac, then prove that either a = 0 or b = c.
- 5. (a) Consider the ring $\mathbb{Q}[i] = \{a + ib \mid a, b \in \mathbb{Q}\}$ under the usual addition and multiplication of complex numbers. Prove that $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$ is a **subring** of $\mathbb{Q}[i]$.
 - (b) i. Show that $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $\phi(x) = x^2$ is not a ring homomorphism.
 - ii. Let $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_5$ be defined by $\phi(x) = x \pmod{n}$. Prove that ϕ is a ring homomorphism.
 - (c) Determine the **characteristics** of the the rings, \mathbb{Z} and \mathbb{Z}_{10} .

END OF EXAMINATION.....