

University of Kelaniya - Sri Lanka Center for Distance & Continuing Education Bachelor of Science(General) External

Third year second semester examination - 2019 (2025 March)

(New Syllabus)
Faculty of Science

Pure Mathematics
PMAT 37612 -Theory of Riemann Integration

No.of Questions: Five (05) No.of Pages: Three (03) Time: Two (2) hrs Answer Four (04) Questions Only

1. (a) Let f be a bounded and positive function defined on [a, b]. Let P be a partition of [a, b]. In the usual notations, define upper Darboux sum U(f, P), lower Darboux sum L(f, P), upper Darboux integral U(f) and lower Darboux integral L(f).

[20 marks]

- (b) The function $f:[1,3] \to \mathbb{R}$ is defined by $f(x) = x^2 + 3$. Let P be a partition of [1,3] with equally spaced n sub intervals.
 - (i) Calculate U(f, P), L(f, P), U(f) and L(f) on the interval [1, 3].

[50 marks]

(ii) Is f Darboux integrable over [1,3]? Justify your answer.

[05 marks]

(c) Let f be a bounded function on [a, b]. If P be a partition of [a, b] then prove U(f, P), L(f, P) are bounded and $U(f, P) \ge L(f, P)$ for all partition P.

[25 marks]

2. (a) Prove that a bounded function f on [a, b] is integrable if and only if for each $\epsilon > 0$ there exists a partition P of [a, b] such that $U(f, P) - L(f, P) < \epsilon$.

[30 marks]

(b) Let f be a bounded Riemann integrable function on [a,b]. Suppose (S_n) is a sequence of Riemann sums, with corresponding partitions p_n , satisfying $\lim_{n\to\infty}||p_n||=0$. Then prove the sequence S_n converges to $\int_a^b f$.

[20 marks]

Continued...

- (c) Prove the following properties of Riemann integrals.
 - (i) If f and g are integrable on [a,b] and if $f(x) \leq g(x)$ for x in [a,b], then $\int_a^b f \leq \int_a^b g.$

[25 marks]

(ii) If g is a continuous nonnegative function on [a, b] and if $\int_a^b g = 0$, then g is identically 0 on [a, b].

[25 marks]

3. (a) (i) State the Dominated Convergence theorem and Monotone Convergence theorem, in the usual notations.

[20 marks]

- (ii) Justifying your calculation, compute the following limits.
- (A) $\lim_{n\to\infty} \int_a^b \left(1+\frac{x}{4n}\right)^n dx$ where a>0 (B) $\lim_{n\to\infty} \int_3^4 \left(\frac{n^2x\sin^2x}{1+(nx)^2}\right) dx$ where $n\geq 1$.

[40 marks]

(b) State the First Fundamental Theorem of Calculus. Hence find $\int_0^5 f \, dx$, where

$$f(x) = \begin{cases} \sqrt{x} \sec^2 x - \frac{\tan x}{2\sqrt{x}} & ; & 0 < x \le 5 \\ 0 & ; & x = 0 \end{cases}.$$

 $[40 \, \mathrm{marks}]$

4. (a) (i) Explain the two types of improper integrals.

 $[10 \, \text{marks}]$

(ii) Evaluate the following improper integrals.

(A)
$$\int_0^4 \frac{dx}{(x^2 - x - 2)}$$
 (B) $\int_0^\infty xe^{-x^2} dx$

[50 marks]

Continued...

(b) (i) Define the convergence and divergence of improper integral.

[10 marks]

(ii) What is meant by saying that the improper integral is absolutely convergent and conditionally convergent.

[20 marks]

(iii) Determine the convergence of $\int_1^\infty \frac{\cos x}{x^2} \ dx$.

[10 marks]

5. (a) Show that the improper integral $\int_a^b \frac{dx}{(x-a)^p}$ converges if p < 1 and diverges for $p \ge 1$.

 $[20 \mathrm{\ marks}]$

(b) State and prove the Comparison test of Type II.

[20 marks]

(c) Examine whether the following improper integrals are convergent or divergent. Justify your answers.

(i)
$$\int_{1}^{\infty} \frac{x^2 + 3x}{\sqrt{x^5 + 1}} dx$$
 (ii) $\int_{0}^{\frac{\pi}{4}} \frac{dx}{\sqrt{\tan x}}$

(iii)
$$\int_0^{\sqrt{2}} \frac{dx}{x\sqrt{2-x^2}}$$
 (iv) $\int_3^{\infty} \frac{1+\cos^2 x}{\sqrt{x}(2-\sin^4 x)} dx$

[60 marks]

— End of Examination —