

University of Kelaniya- Sri Lanka Faculty of Science

Centre for Distance & Continuing Education Bachelor of Science (General) Degree Examination-External September 2024

Academic Year 2019- Semester I

PURE MATHEMATICS | PMAT 36602- Abstract Algebra

No. of Questions: Five (05)

No. of Pages: Two (02)

Time: Two (02) hours

Answer only FOUR (04) questions.

- 1. (a) If G is a group under the operation *, then prove that for each $a \in G$, a^{-1} is uniquely determined.
 - (b) Let $G = \{ \begin{pmatrix} a & b \\ 0 & 1/a \end{pmatrix} \mid a, b \in \mathbb{R}, a \neq 0 \}.$
 - i. Prove that G is a group under the usual matrix multiplication.
 - ii. Show that G is not an abelian group.
 - (c) Let x be an element of the group G. Prove that if |x| = n for some positive integer n, then $x^{-1} = x^{n-1}$.
- 2. (a) Let H be a finite nonempty subset of a group G such that $HH \subset H$. Prove that $H \leq G$. $(HH = \{h_1 * h_2 \mid h_1, h_2 \in H\}$, where * denotes the binary operation defined on G.)
 - (b) i. State Lagrange's theorem.
 - ii. Prove that if G is a finite group and $x \in G$, then $x^{|G|} = 1$ for all $x \in G$. (1 denotes the identity element of the group G.)
 - (c) Prove that if H and K are normal subgroups of a group G then their intersection $H \cap K$ is also a normal subgroup of G.
- 3. (a) Define $\psi: \mathbb{R}^2 \longrightarrow \mathbb{R}$ by $\psi((x,y)) = x$. Prove that ψ is a homomorphism. Find the Kernal of ψ .
 - (b) Let G and H be groups and let $\phi: G \longrightarrow H$ be a homomorphism. Prove that, in the usual notation $\phi(g^{-1}) = \phi(g)^{-1}$ for all $g \in G$.
 - (c) i. Let G and H be finite groups. If $\phi: G \longrightarrow H$ is an isomorphism, prove that |G| = |H|.
 - ii. Determine whether \mathbb{Z}_3 and S_3 are isomorphic in the usual notation.

Continued.

- 4. (a) Let $\mathbb{Q}(\sqrt{2}) = \{a + \sqrt{2}b \mid a, b \in \mathbb{Q}\}\$ be a subset of \mathbb{R} .
 - i. Prove that $\mathbb{Q}(\sqrt{2})$ is a commutative ring, with identity 1, under the usual addition and multiplication of real numbers.
 - ii. Show that every nonzero element in this commutative ring is a unit.
 - (b) Let R be a ring. Prove that in the usual notation that (-a)b = a(-b) = -(ab) for all $a, b \in R$.
 - (c) Let R be a ring with identity 1. Prove that if u is a unit in R then -u is also a unit in R.
- 5. (a) Let R be a ring with identity 1. For a fixed element $a \in R$ define $C(a) = \{r \in R \mid ra = ar\}$. Prove that C(a) is a subring of R containing a.
 - (b) Let R be a ring and $a \in R$ be such that $a^2 = a$. Define $\phi_a : \mathbb{Z} \longrightarrow R$ by $\phi_a(x) = xa$. Prove that ϕ is a ring homomorphism.
 - (c) Determine the characteristics of the the rings, \mathbb{Q} and \mathbb{Z}_8 .