

University of Kelaniya - Sri Lanka Center for Distance & Continuing Education Bachelor of Science(General) Degree

Third Examination - 2022 (2024 September) First Semester (External)

(New Syllabus)
Faculty of Science

Pure Mathematics PMAT 36593 - Complex Variables

No.of Questions: Six(06) No.of Pages: Three(03) Time: $(2\frac{1}{2})hrs$ Answer Five(05) Questions Only

1. (a) Express the following complex numbers in the form a + ib where $a, b \in \mathbb{R}$.

(A).
$$\frac{i}{1-i} + \frac{1-i}{i}$$

(B).
$$\frac{(1+i)^{2024}}{\sqrt{2}}$$

(b) Compute the value of

$$\operatorname{arg}\left(\frac{i}{-2-2i}\right).$$

- (c) Find the polar form of $z = -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$, and write it as $z = re^{i\theta}$.
- (d) Find all the complex roots of $z = (-1+i)^{1/3}$ and locate them graphically.
- 2. (a) Show that $\lim_{z\to 0} \frac{z}{\bar{z}}$ does not exist.
 - (b) Determine whether the complex-valued function f(z) is continuous at z = 0, where

$$f(z) = \begin{cases} \frac{z^2}{|z|^2} & z \neq 0\\ 1 & z = 0. \end{cases}$$

(c) Show that, if the function f(z) is differentiable at z_0 then f(z) is continuous at z_0 .

Continued...

3. (a) Let f(z) = u(x,y) + iv(x,y) be defined on a domain D in the complex plane, where u(x,y) and v(x,y) are real-valued functions. Assume that first-order partial derivatives of u and v exist, continuous, and satisfy the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

- i. Show that f = u + iv is analytic.
- ii. Determine whether the function f(z) = Re(z) = x is analytic.
- (b) i. Show that $u(x,y) = \ln(x^2 y^2)$ is harmonic on \mathbb{C} .
 - ii. Find the harmonic conjugate v(x,y) for u(x,y) on \mathbb{C} where v(0,0)=0. Express f(z)=u+iv in terms of z.
- 4. (a) Calculate

$$\int_{\gamma} \bar{z} dz,$$

where γ denotes the circle |z - i| = 2 oriented counterclockwise.

- (b)
- i. State Cauchy's Theorem.
- ii. Evaluate $\oint_{\gamma} \frac{dz}{(z-a)}$, where γ is any simple closed curve and z=a is
 - (A). outside γ

- (B). inside γ .
- (c) Using Cauchy's integral formula, prove that

$$\oint_{\gamma} \frac{z}{z^2 + 9} dz = \pi i ,$$

where γ is the circle |z - 2i| = 4.

- 5. (a) Find the Laurent series of $f(z) = \frac{z^2}{z^2 3z + 2}$ in each of the following domains
 - i. 1 < |z| < 2,
 - ii. 1 < |z 3| < 2.

Continued...

- (b) Consider the complex function $f(z) = \frac{e^z}{1 z^2}$
 - i. Find all its singularities in \mathbb{C} .
 - ii. For each singularity, determine whether it is a pole, a removable singularity, or an essential singularity.
 - iii. Compute the residue of the function at each singularity.
 - iv. Write the principal part of the function at each singularity.
- 6. (a) State the Residue theorem.
 - (b) Using the Residue theorem, evaluate the integral

$$\oint_{\gamma} \frac{2z+6}{z^2+4} \, dz,$$

where γ is the circle |z - i| = 2.

(c) Show that,

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \pi.$$

 $\star\star\star\star\star$ END $\star\star\star\star\star$