

University of Kelaniya - Sri Lanka
Center for Distance & Continuing Education
Bachelor of Science (General) External
Second Year second semester Examination - 2019 (2024 September)
(New Syllabus)
Faculty of Science

Applied Mathematics AMAT 36593 - Computational Mathematics

No.of Questions: Six(06) No.of Pages: Four(04) Time: Two & half $(2\frac{1}{2})$ hrs
Answer Five(05) Questions Only

1. (a) Starting with the Taylor series expansions of $u(x, t - \Delta t)$, $u(x, t - 2\Delta t)$, derive the second order left sided finite difference approximation for $\frac{\partial u}{\partial t}$ as

$$\frac{3u(x,t)-4u(x,t-\Delta t)+u(x,t-2\Delta t)}{2\Delta t}.$$

Further show that the truncation error for the above approximation is given by

$$\frac{\Delta t^2}{3} \frac{\partial^3 u}{\partial t^3} + \text{terms of higher order}$$

[35 marks]

(b) Consider the following 1D Heat equation with initial and boundary conditions:

$$u_t + \gamma u_{xx} = 0$$
 $0 < x < 1$
 $u(0,t) = g_0(t), \ u(1,t) = g_1(t)$ $t > 0$
 $u(x,0) = \eta(x).$

(i) Derive a finite difference scheme to solve the above problem by approximating the space derivative by the **second order symmetric difference** approximation and time derivative by **second order left sided finite difference** (part (a)) approximation.

[30 marks]

(ii) Represent the discrete form of the scheme in a matrix form.

[35 marks]

Continued...

- 2. (a) What it meant by saying that the partial differential equation (PDE) is well posed? [10 marks]
 - (b) Define the following terms with respect to the finite difference scheme:
 - (i) Consistency
 - (ii) Convergence
 - (iii) Stability

[30 marks]

(c) The finite difference representation of the 1D Heat equation is given by

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \mu \ \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{\Delta x^2}$$

where μ is a positive constant and Δx , Δt are step sizes of space and time respectively.

(i) By taking $\alpha = \mu \frac{\Delta t}{\Delta x^2}$, show that the above scheme is consistent with the 1D Heat equation $u_t = \mu u_{xx}$.

[30 marks]

(ii) Discuss the stability of the above scheme by using von-Neumann stability analysis. If the scheme is von-Neumann stable, find the condition for α .

[30 marks]

3. Consider the following Laplace equation:

$$u_{xx} + u_{yy} = 0,$$
 $0 < x < 1,$ $0 < y < 1$
 $u(x,0) = x,$ $u(x,1) = x + 1,$ $0 \le y \le 1$
 $u(0,y) = y,$ $u(1,y) = y + 1$ $0 \le x \le 1.$

To construct the grid use 4 subintervals for x spatial variable and 2 subintervals for y spatial variable.

Find the numerical solution of each grid point and compare those with actual solution of u(x, y) = x + y.

[100 marks]

Continued...

$$u_t + \mu u_x = u_{xx} \qquad 0 < x < l$$

$$u(0,t) = g_1(t), \ u_x(l,t) = g_2(t) \qquad t > 0$$

$$u(x,0) = h(x) \qquad 0 \le x \le l.$$

(i) Derive the finite difference scheme by using centered difference to approximate the first derivatives of t, forward difference to approximate the first derivative of x except at x = l, second order symmetric differences to approximate second derivative and backward difference to approximate the boundary condition at x = l.

[60 marks]

(ii) Represent the discrete form of the scheme in a matrix form.

[30 marks]

(iii) What conditions need to be satisfied by the boundary value problem and boundary conditions in order to apply the von-Neumann stability analysis?

[10 marks]

5. (a) Consider the differential equation $\mathcal{L}\varphi + f = 0$ in the domain D. Let $\psi(x) = \sum_{i=1}^{n} c_i N_i(x)$ be the approximation solution for the differential equation, where c_i , N_i are coefficients and trial functions, respectively. Explain the steps used to evaluate the approximate solution by using the weighted residual method.

[25 marks]

(b)

(i) In the usual notations, define the weak derivative of a function. Find the weak derivative of the following function f(x) in the domain (0, 2):

$$f(x) = \begin{cases} x & 0 < x < 1 \\ 1 & 1 \le x < 2. \end{cases}$$

[30 marks]

(ii) In the usual notations, define the vector spaces $L^2(a,b)$ and $H^1_0(a,b)$.

[20 marks]

(iii) Find the weak form of the following boundary value problem:

$$u_x(x) + \epsilon u_x u_{xx}(x) = h(x)$$

$$u(0) = 0, \ u(l) = 0.$$

Hint:
$$2u_x u_{xx} = \frac{du_x^2}{dx}$$
.

[25 marks]

Continued...

$$u'' + xu' = x^2, \quad 0 < x < 1$$

 $u(0) = 0, \ u(1) = 0.$

(i) For the point collocation method, which function need to be selected as the weighted function?

[10 marks]

(ii) Taking the trial function as $u(x) = x(1-x)(c_0+c_1x)$, solve the above problem using point collocation method at the points $x = \frac{1}{3}, \frac{2}{3}$.

[40 marks]

(b) Consider the following boundary value problem:

$$u'' = \sec^2(\pi x)\csc(\pi x) + x, \quad 0 < x < 1$$

 $u(0) = 0, \ u(1) = 0.$

(i) For the Galerkin method, which function need to be selected as the weighted function?

[10 marks]

(ii) Taking the trial function as $u(x) = A\sin(\pi x)$, solve the above problem using Galerkin method.

[40 marks]

— End of Examination Paper —