

University of Kelaniya - Sri Lanka Centre for Distance and Continuing Education Faculty of Commerce & Management Studies Bachelor of Business Management (General) Degree Third Examination (External) – 2014/2015 July - 2019

BMGT E 3045 - Operational Management

No of questions : 08 (Eight) Answer any five (05) questions.

Question No. 01

е: Х. р

a) "Production and Operations Management is the process of planning, organizing and controlling the activities of production function". Elaborate this statement.

(06 marks)

Time: 03 Hours

- b) Briefly explain each of following terms related to the historical evolution of operations management.
 - (i) Industrial Revolution.
 - (ii) Scientific Management.
 - (iii) Division of labour. (09 marks)

c) List five important differences between goods production and service production.

(05 marks)

(Total 20 marks)

Question No. 02

a) Discuss the recent trends in production and operations management with suitable examples.

(08 marks)

- b) Describe the primary inputs, outputs and conversion process of the followings:
 - (i) A Hospital
 - (ii) An Electronic products company.
 - (iii) A school.

(12 marks)

(Total 20 marks)

Question No. 03

a) What is a capacity requirement planning?

(04 marks)

b) Briefly explain the measurs of capacity.

(04 marks)

c) A manufacturer produces electric grinders and electric drills, for which the demand exceeds his capacity. The production cost of a grinder is Rs. 600 and production cost of a drill Rs. 400. The transportation cost is Rs. 20 for a grinder and Rs. 30 for a drill. A grinder sells for Rs. 900 and a drill sells for Rs. 550. The budget allows a maximum of Rs. 240000 for production costs and Rs. 120000 for transportation costs.

Determine the production schedule that should be produced in order to maximize the excess of sales.

(12 marks) (Total 20 marks)

Question No. 04

a) What are the steps involved in the forecasting process? Explain.

(04 marks)

b) What are the differences between quantitative and qualitative forecasting methods? (04 marks)

Month	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.
Demand	4200	4300	4000	4400	5000	4700

c) The monthly actual demand for a product for the last year is as follow	c)	The monthly actual	demand for a	product for the la	st year is as follow
---	----	--------------------	--------------	--------------------	----------------------

Month	Feb.	March	Apr.	May	June	July
Demand	5300	4900	5400	5700	6300	6000

- (i) What would be the forecast for next August using a three month moving average?
- (ii) What would be the forecast for next August using single exponential smoothing?

(The smoothing constant is 0.3 and forecast for July was 5000 units)

(iii) Calculate mean Absolute Deviation. (MAD)

(12 marks)

(Total 20 marks)

Question No. 05

a) Briefly explain the two basic types of product layouts.

(04 marks)

b) Explain the purpose of assembly line balancing and how it supports the needs of relevant layout.

(04 marks)

c) A firm is planning to set up an assembly line to assemble 40 units per hour. The time to perform each task and the tasks which precede each task are;

Task	Preceding Task	Time to performs (min)
Α		.69
В	А	.55
С	В	.92
D	В	.59
E	В	.70
F	В	1.10
G	C, D, E	.75
Н	C, D, E G,F	.42
I	Н	.29

- (i) Draw a network diagram for the above tasks.
- (ii) Compute the cycle time per unit in minutes

- (iii) Compute the theoretical minimum number of workstations required to produce 40 units per an hour.
- (iv) How would you assign these tasks into work stations? What is the efficiency of the line?

(12 marks) (Total 20 marks)

Question No. 06

a) Choose a product of your choice and discuss the environmental issues involved in designing that product.

(04 marks)

b) Describe the methods to improve productivity.

(04 marks)

- c) "Brand Products" is trying to decide whether to make-or-buy accessory items for one of their products. It is projected that this item will be sold at Rs. 100 each. If the item is outsourced, there is virtually no cost other than Rs. 60 per unit that they would pay their supplier. if they decide to buy the items. If they decide to make Internally, then they have two choices: process A and B. Process A requires an investment of Rs. 1200000 for design and equipment, but results in a Rs. 40 per unit cost. Process B requires only a Rs. 1,000,000 investment, but it's per unit cost is Rs. 50. Regardless of whether the item is subcontracted or produced internally, there is a 50% chance that they will sell 50,000 units, and a 50% chance that they will sell 100,000 units.
 - (i) Draw the decision tree appropriate to the alternatives and outcomes stated.
 - (ii) Using decision tree; select the best choice.?

(12 marks) (Total 20 marks)

Question No. 07

a) Explain the four types of the 'costs of quality'.

(02 marks)

b) What is the purpose of the operating characteristics curve (OCC)?

(02 marks)

c) What do the terms 'producer's risk' and 'consumer's risk' mean?

(02 marks)

- d) Consider an acceptance sampling plan with n = 210 and c = 6, and;
 - Plot the operating characteristic curve (OC) for this sampling plan using at least 6 exact points.
 - (ii) How does this plan meet specifications of Acceptable Quality Level (AQC) = 0.015, Producer's risk (α) = 0.05, Lot Tolerance Percent Defective (LTPD) = 0.05, and Consumer's risk (β)' = 0.10 ?

(14 marks) (Total 20 marks)

Question No. 08

÷

a) Examine the steps involved in work study.

(04 marks)

b) Discuss the steps involved in implementing method study.

(04 marks)

- c) A time study was made of an existing job to develop new standards. The worker was observed for 30 minutes during which he made 20 units. He was rated at 90% by the analyst. The firm's allowance for rest and personal time is 12%.
 - (i) What is the normal time for the task?
 - (ii) What is the standard time for the task?
 - (iii) If the worker produces 360 units in an eight hour day, what would be the day's pay if the base rate is Rs. 600 per standard hour?

(12 marks)

(Total 20 marks)

Tables of the Poisson Cumulative Distribution

ŀ.

ł

The table below gives the probability of that a Poisson random variable X with mean = λ is less than or equal to x. That is, the table gives $P(X \le x) = \sum_{r=0}^{x} \lambda^{r} \frac{e^{-\lambda}}{r!}$

λ=	1 .0	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1	1. 6	1.8
0 X	.904	.818	74	670	606	.54	496	.449	.40	.367	301	24	6	0.1653
. 1 22201	0.9953	0.9825	.963	0.9384	0	0.8781	4	0.8088	0.7725	0.7358		<u>~</u> ~	.524	62
7	.999	.998	σ	.992	.985	976	965	.952	.93	919	879	.833	.783	730
6	000	666.	999.	.999	.998	996	994	066.	.98	.981	966	.946	.921	891
7	000.	00	00	999	.999	99		.998	66.	996.	992	98.	0.9763	0.9636
Ś	0	1.0000	00	000.	0	000	999	999	66.	999	998	.996	994	989.
9	00	00	0	00	000	000	000	000.	8	999	666.	.999	.998	997
r	1.0000	1.0000	0	00	1.0000	0	00	000	00	00			666.	999
00	00	0		8	0	0	00	0	1.0000	00	000	00	1.0000	999
6	1.0000	00	00	1.0000	00	00	000.	000.	00	00	000	000'	000.	000
$\lambda =$	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.5	5.0	5.5
0 X	.135	110	0	074	090	049	040	033	.027	022	.018	011	0	00
- 7 004	00		0.3084	0.2674	0.2311	0.1991	N -	0.1468	0.1257	0.1074	0.0916	0.0611	0	20
~	.676	.622	.56	.518	.469	.423	.379	339	.302	.268	.238	.173	,124	.088
ŝ	.857	.819	778	.736	.691	647	.602	558	.515	473	433	.342	.265	201
4	Ő,	.927	.904	.877	.847	.815	.780	744	.706	.667	.628	.532	440	357
ŝ	.983	.975	o,	.951	.934	.916	894	870	.844	815	.785	.702	.616	528
0	.995	.992	988	.982	.975	966.	.955	.942	.926	908	.889	.831	.762	686
	0.9989	68	.996	994		0.9881	983	976	.96	0.9599	•	.913		80
8	999.	999.	ნი	998	.997	996.	994	991	.988	984	.978	.959	931	894
6	000	999.	66.	999	999.	98	.998	997	.996	994	.991	.982	.968	946
O T	00	00	1.0000	999	99	999	999	999	.998	998	.997	.993	Ø	974
)•~~)•~~	8	000.	8	000.	000.	999	999.	999	999.	999	.999	997	994	080 0
5	80	8	0	00	00	00	00	999	666.	999	,999	999	998.	995
13	80	8	1.0000	8	1.0000	0	0	00	0	8		999.	о О	998
• V	8	00	1.0000	00	00	000.	Ō	00	00.	00		0 0	999.	999.
	00	8	00	00	00	00	Ō	00	00	00	00	1.0000	999.	0.9998
16	00	00	0	00	00	00	0	8	0	8	1.0000	00	00	999.
	00	8	1.0000	00	00	00	00	00	00	00	00	00	00	000

	32	U U H	30	29	28	27	50	50	24	ານ ເມ	22	12 12 14	2.0		00 00	<u> </u>	o I	14 14	N. A	ET S	Ч, Г		01	6	60		6	ų Li S	4		12 12		0 <u>-</u> ×	
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	0.9995	0.9986	0.9964	0.9912	0.9799	0.9574	0.9161	0.8472	0.7440	0.6063	0.4457	0.2851	0:1512	0.0620	0.0174	.002	6:0
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.99999	0.9998	0.9996	0.9988	0.9970	0.9929	0.9840	0.9661	0.9332	0.8774	0.7916	ົດ	0.5265	0.3690	0.2237	0.1118	0.0430	01	2	6.5
	1.0000	ċ	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		9996	0.9990	0.9976	0.9943	0.9872	0.9730	0.9467	0.9015	0.8305	0.7291	0,5987	0.4497	0.3007	0.1730	0.0818	0.0296	0.0073		7.0
ditertation descent essentials of pre-	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9980	0.9954	0.9897	0.9784	CÚ1	0.9208	0.8622	0.7764	0.6620	0.5246	0.3782	0.2414	0.1321	0.0591	0.0203	₽	0.0006	7.5
والمساوية بالا كالمستعم التكريم وسيعتمون	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	0.9999	0.9997	0.9993	0.9984	0.9963	0.9918	80.	S	.936	0.8881	0.8159	0.7166	0.5925	0.4530	0.3134	0.1912	0.0996	0.0424	0.0138		0.0003	8-0 B
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9998	in	0.9987	'n	0.9934	0.9862	0.9726	0.9486	0.9091	0.8487	0.7634	0.6530	0.5231	0.3856	0.2562	0.1496	0.0744	0.0301	0.0093	.001	0.0002	9.58 95 184
	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	6666.0	0.9998	0.9996	0.9989	0.9976	0.9947	0.9889	0.9780	0.9585	.92	0.8758	0.8030	0.7060	0.5874	0.4557	23	0.2068	0.1157	.055	0.0212	.006		0.0001	9.0
	1.0000	1,0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9999	0.9996	0.9991	0,9980	0.9957	0.9911	0.9823	0.9665	0.9400	0.8981	.83	0.7520	о	0.5218	0.3918		0.1649	0.0885		0.0149	0.0042	0.0008	0.0001	9.5
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9993	0.9984	0.9965	0.9928	0.9857	.97	0.9513	ģ	80	•	0.6968	07 08	0.4579	0.3328	.22	0.1301	0.0671	.029	0.0103	N	0.0005	0.0000	10.0
the Columbra Andrea spectra de la companya se	1.0000	1.0000	0	\circ	0	0	ò.	cō.		90	ő	0	ő	Ś	ő	ő	ő	စ္ဆ	00	N	တ	C1	4	0.3405	Ň.		Ò.	ò	Ö	ò	ö		6	0.11
	1.0000	1.0000	1.0000	1.0000		1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9993	0.9984	0.9965	0.9928	0.9857	0.9730	0.9513	0.9165	0.8645	0.7916	0.6968	0.5830	0.4579	0.3328	0.2202	0.1301	0,0671	0.0293	0.0103	0,0028	0.0005	0.0000	10%0
	<u> </u>	1.0000	<u>.</u>	<u></u>		O	0.999	0.999	0.999	0.99	0.997	0.993	Ó	0	0	0	ò	0	0	0	0	0	Ò		Ó	0	0	0	0.007	0.00	0.000	0.0	0.000	12.0
	000	1.0000	-			-							0	0	0	ç	0	0	0.5704	Ċ,	0	<u>o</u>	ò	0	0.06	0.0	0.01	0.00	.001	0	0.0001	ò	ö	14:0
	000	6666.0	000	666	00	866	Q	993	886	80	967	946	917	875	ò	.748	664	5008	0.4657	.363	.267	.184	18	0690	.037		007	.002	.000	0000	00	.000	0.0000	15:0