

University of Kelaniya – Sri Lanka Centre for Distance & Continuing Education Bachelor of Science (General) External Second year first semester examination (Repeat) - 2021

(New Syllabus)

2025 June

Faculty of Science
Pure Mathematics
PMAT 26562(R)-Infinite Series

No. of Questions: Five (05)

No. of Pages: Three (03)

Time: Two (02) hrs.

Answer Four (04) Questions Only.

1) (i) Assume that in the usual notations, $\lim_{n\to\infty} s_n = a$ and $\lim_{n\to\infty} t_n = b$. Using the $\varepsilon - N$ definition of the limit of a convergent sequence, prove that $\lim_{n\to\infty} (s_n + t_n) = a + b$.

(20 marks)

- (ii) Determine wheather the sequence $\left\{\frac{\ln(n+2)}{\ln(1+4n)}\right\}_{n=1}^{\infty}$ converges or diverges.

 If it converges, find its limit. (15 marks)
- (iii) Let the sequence $\{a_n\}_{n=1}^{\infty}$ be defined recursively by $a_1 = 0$, $a_{n+1} = \frac{1}{3}(a_n + 3)$ for all $n \in \mathbb{N}$.
 - (a) Show that $a_n < 3$ for all $n \in \mathbb{N}$.
 - (b) Show that $\{a_n\}_{n=1}^{\infty}$ is increasing.
 - (c) Deduce that $\{a_n\}_{n=1}^{\infty}$ is convergent and find its limit.

(35 marks)

(iv) Determine whether the sequence $\left\{\frac{4-n}{2n+3}\right\}_{n=1}^{\infty}$ is increasing, decreasing, monotonic, bounded below, bounded above and/or bounded.

(30 marks)

Total - [100 marks]

Continued...

2) (i) (a) State the p-series test. (10 marks)

- (b) Determine whether the series $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right) + \frac{1}{n^2}$ is convergent? (20 marks)
- (a) State the Integral Test for a series using a function defined on $[1, \infty)$.

(15 marks)

- (b) Consider the series $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$;
 - (a) Using the Integral Test, show that the above series is convergent.
 - (β) Estimate the bounds of the remainder R_5 using the partial sum of the first five terms S_5 .
 - (γ) Using part (β), find an improved estimate for the sum of the series.
 - (δ) Find the smallest value of n such that the approximation error is (55 marks) within 0.0001?

Total - [100 marks]

- State the Alternating Series Test for the convergence of the series $\sum (-1)^n b_n$. 3) (i)
 - (a) Using the alternating series test, show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{10n^2}$ is (ii) convergent.
 - (b) Using the Alternating Series Estimation Theorem, estimate the minimum number of terms needed to achieve an approximation error less than 0.0005. (20 marks)
 - (iii) Determine by stating any test you use whether the following series are absolutely convergent, conditionally convergent or divergent.

 (a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-3}}{\sqrt{n}}$ (b) $\sum_{n=0}^{\infty} \frac{(-2)^{3n}}{5^n}$ (c) $\sum_{n=1}^{\infty} \frac{\sin(3n)}{n^{6}+1}$

(40 marks)

Total - [100 marks]

- 4) (a) State the comparison test using two positive series represented by $\sum a_n$ and (20 marks) $\sum b_n$.
 - (b) Using 50 terms, and by using the comparison test, estimate the error involved when estimating the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$.
 - Determine whether the following series are convergent or divergent by using the direct comparison or limit comparison Test.

 - (a) $\sum_{n=0}^{\infty} \frac{1}{3^n n}$ (b) $\sum_{n=1}^{\infty} \frac{n}{n^2 \cos^2(n)}$ (c) $\sum_{n=1}^{\infty} \frac{4n^2 n}{n^3 + 9}$

(40 marks)

Continued...

- (iii) Using the root test, determine whether the series $\sum_{n=4}^{\infty} \frac{(-5)^{1+2n}}{2^{5n-3}}$ is convergent or divergent. (20 marks)

 Total [100 marks]
- 5) (i) Determine the radius of convergence and the interval of convergence of the power series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n_1 0^n} (x-2)^n$ (40 marks)
 - (ii) Starting from a known geometric series, find a Maclaurin series representation for ln(1 + x). Hence, evaluate
 - (a) $\ln\left(\frac{1+x}{1-x}\right)$ (b) $\int_0^1 \frac{\ln(1+x)}{x} dx$

(30 marks)

- (iii) (a) In the usual notation, write down Taylor's inequality for a function f(x).

 (10 marks)
 - (b) Find the degree three Taylor Polynomial for the function $f(x) = \sqrt{x}$ about the center 1.

Also, find the remainder term using the Taylor's inequality.

(20 marks)

Total – [100 marks]

.....END OF PAPER.....