

University of Kelaniya – Sri Lanka Centre for Distance & Continuing Education Bachelor of Science (General) External

Second year second semester examination - 2019 (2024 February)

(New Syllabus)

Faculty of Science Pure Mathematics

PMAT 27572- Ordinary Differential Equations

No. of Questions: Five (05)

No. of Pages: Two (02)

Time: Two (02) Hours.

Answer Four (04) questions only.

1. (i) Using existence and uniqueness theorem, determine whether the initial value problem $y' = y^2$, y(0) = 1 has a unique solution.

(ii) Find the solution of the initial value problem, $\frac{dy}{dx} + y \tan x = e^{2x} \cos x$, y(0) = 2.

(iii) Consider the following initial value problem:

$$(x^2 + 3y^2)\frac{dy}{dx} + 2xy = 0$$
, $y(1) = 1$.

Show that the above equation is exact and hence, find the solution.

(iv) Find the differential equation of the family of curves given by the equation, $x^2 - y^2 + 2\lambda xy = 1$, where λ is a parameter. Hence, obtain the differential equation of its orthogonal trajectories.

2. (i) Show that the differential equation $xy' + y = -3xy^2$ is in the form of Bernoulli equation and hence, find the solution.

(ii) Reduce the following differential equation into homogeneous form and hence find

the solution:
$$\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$$

continued...

3. Solve the following differential equations:

(i)
$$(D^3 + 8)y = x^4 + 2x + 1$$

(ii)
$$(D^2 - 5D + 6)y = e^{4x}(x^2 + 9)$$

(iii)
$$(D^2 - 1)y = x^2 \cos x$$

(iv)
$$(D^2 - 1)y = xe^x + \frac{1}{2} + \frac{\cos 2x}{2}$$

4. (i) Let $y = C_1 u(x) + C_2 v(x)$ be the general solution of y'' + P(x)y' + Q(x)y = 0. Show that y = A(x)u(x) + B(x)v(x) is a solution of y'' + P(x)y' + Q(x)y = R(x), where $A(x) = -\int \frac{vR}{w} dx$, $B(x) = \int \frac{uR}{w} dx$ and W being the Wronskian of u and v. Hence, solve the following differential equation:

$$y'' - 3y' + 2y = e^{-x}.$$

- (ii) Find the general solution of the differential equation $(D^2 + 2D + 2)y = x^2 + \sin x$ using the method of undetermined coefficients.
- 5. (i) Consider the second order liner differential equation with variable coefficients $a_2 x^2 \frac{d^2 y}{dx^2} + a_1 x \frac{dy}{dx} + a_0 y = F(x), \text{ where } a_0, a_1, a_2 \text{ are constants.}$ Using a substitution $z = \log x$, show that $\frac{dy}{dx} = \frac{1}{x} \frac{dy}{dz}$ and $\frac{d^2 y}{dx^2} = \frac{1}{x^2} \left(\frac{d^2 y}{dz^2} \frac{dy}{dz} \right)$.
 Hence, convert the differential equation into the form,

$$a_2 \frac{d^2 y}{dx^2} + (a_1 - a_2) \frac{dy}{dx} + a_0 y = Q(e^z).$$

(ii) Using part(i), solve the following differential equation:

$$x^{2}\frac{d^{2}y}{dx^{2}} + 7x\frac{dy}{dx} + 13y = \log x.$$

..... END