

University of Kelaniya – Sri Lanka Centre for Distance and Continuing Education

Bachelor of Science (General) Degree, Third Examination (External) - 2012/2013 (New Syllabus)

June/July - 2017

Pure Mathematics – PMAT E1035

Discrete Mathematics I

No. of Questions: Eight (08)

Number of Pages: Four (04)

Time: Three (03) Hrs

Answer Six (06) Questions Only.

- 1. Let A and B be two non-empty bounded subsets of \mathbb{R} .
 - (a) Define $\sup A$ and $\inf A$.
 - (b) Find $\sup A$ and $\inf A$ considering each of the following subsets A of \mathbb{R} .

(i)
$$A = \{x: \sqrt{2} \le x < 2 \text{ or } x = 3\}$$

(ii)
$$A = \left\{ \frac{1}{n+1} : n \in \mathbb{Z}^+ \right\}$$

(iii)
$$A = \left\{ \frac{n}{n+1} : n \text{ is a prime number} \right\}$$

- (c) The subset C is defined by $C = A + B = \{a + b : a \in A, b \in B\}$.
 - (i) Show that $\sup C = \sup A + \sup B$ and
 - (ii) find sup C when $A = \left\{ \frac{(-1)^n}{n} : n \in \mathbb{Z}^+ \right\}$ and $B = \left\{ \frac{2}{n} : n \in \mathbb{Z}^+ \right\}$.

2. (a) By using the definition of a limit of a sequence, prove that

$$\lim_{n\to\infty} \frac{5n}{n+3} = 5$$

(b) The sequence $(a_n)_{n=1}^{\infty}$ is defined by $a_1=4$ and, for $n\geq 1$, $a_{n+1}=\frac{5}{6-a_n}$.

Using mathematical induction, show that

- (i) $1 < a_n < 5$ and that
- (ii) $(a_n)_{n=1}^{\infty}$ is a monotone decreasing sequence

and then prove that

- (iii) the sequence $(a_n)_{n=1}^{\infty}$ converges to 1.
- 3. (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a given function and let $a \in \mathbb{R}$. Define what is meant by $\lim_{x \to a} f(x) = l$.
 - (b) By using the first principles, prove that $\lim_{x\to 0} (x^2 \sin x) = 0$.
 - (c) Let f, g and h be three real-valued functions whose domain of each is \mathbb{R} . If, for all $x \in \mathbb{R}$,

$$f(x) \le g(x) \le h(x)$$
 and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$

then prove that $\lim_{x\to a} g(x) = l$.

(c) Determine whether the function f defined below is continuous at x = 0.

$$f(x) = \begin{cases} xe^{-\frac{1}{x^2}} & ; & x \neq 0 \\ 0 & ; & x = 0 \end{cases}$$

- 4. (a) State Rolle's Theorem.
 - (b) State Mean Value Theorem and prove it using Rolle's Theorem.
 - (c) Show that the equation $e^x + x = 0$ has exactly one real root.
 - (d) Find each of the following limits, if exists:

(i)
$$\lim_{x \to 0} \frac{x^2 + 2\cos x - 2}{x^4}$$
 (ii) $\lim_{x \to \infty} \left(1 - \frac{5}{2x}\right)^{4x}$

(ii)
$$\lim_{x \to \infty} \left(1 - \frac{5}{2x}\right)^{4x}$$

- 5. (a) Find the arc length of the curve $y = \frac{1}{2}(e^x + e^{-x})$ from x = 0 to $x = \ln 3$.
 - (b) R is the region bounded by the curve $y = 1 + \sin(x^2)$ and the lines y = x, x = 0 and $x = \sqrt{\frac{\pi}{2}}$.
 - Sketch R. (i)
 - (ii) Find, by using the cylindrical shell method, the volume of the solid generated by revolving R about the y-axis by 360°.
 - (iii) Find an expression, in terms of an integral, for the volume of the solid generated by revolving R about the x-axis by 360° .
- 6. (a) Evaluate each of the following definite integrals:

(i)
$$\int_{\frac{\pi^2}{4}}^{\pi^2} \frac{\sin\sqrt{x}}{\sqrt{x}} dx$$

(i)
$$\int_{\frac{\pi^2}{4}}^{\frac{\pi^2}{4}} \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$
 (ii) $\int_{2}^{5} \frac{1}{\sqrt{x^2 - 4x + 13}} dx$

(b) For positive integral n, if $I_n=\int x^n\sqrt{1-x}\;dx$ then show that

$$(2n+3)I_n = 2nI_{n-1} - 2x^n(1-x)^{\frac{3}{2}}$$

and hence evaluate $\int_0^a x^2 \sqrt{1-x} \ dx$.

7. (a) Solve each of the following differential equations:

(i)
$$x \frac{dy}{dx} = \frac{y}{\ln x}$$

(ii)
$$\frac{dy}{dx} = \frac{y \cos \frac{y}{x} - x \sin \frac{y}{x}}{x \cos \frac{y}{x}}$$

- (b) Show that the differential equation $(3x^2y^2 + x^2) dx = (2x^3y + y^2) dy$ is exact and then solve it.
- 8. Solve each of the following differential equations:

(a)
$$\frac{dy}{dx} + \frac{y}{x} = x^3$$

(b)
$$\frac{dx}{dy} + xy = x^3y$$

(c)
$$\frac{dy}{dx} = y \tan x - y^2 \sec x$$