APPLIED MATHEMATICS

Vector Algebra and Vector Analysis-AMAT E 1015

No.of questions: Eight(08)

No.of Pages: Three(03)

Time: Three(03) hrs

Answer six(06) questions only.

1. (a) Let OACB is a parallelogram so that $\overrightarrow{OA} = \underline{a}$ and $\overrightarrow{OB} = \underline{b}$. Show that the position vector of the point E which divides the line AB in the ratio k: 1 is given by $\overrightarrow{OE} = \underline{a} + \frac{k}{k+1} (\underline{b} - \underline{a}).$

Also show that extended *OE* cuts *AC* in the ratio k: 1 - k.

(b) Prove that any vector \underline{a} can be written in the form

$$\underline{a} = (\underline{a} \cdot \underline{i})\underline{i} + (\underline{a} \cdot \underline{j})\underline{j} + (\underline{a} \cdot \underline{k})\underline{k}.$$

Hence show that $\underline{i} \times (\underline{a} \times \underline{i}) + \underline{j} \times (\underline{a} \times \underline{j}) + \underline{k} \times (\underline{a} \times \underline{k}) = 2\underline{a}$.

(c) Compute the scalar triple product $(\underline{i} - 2\underline{j} + 3\underline{k}) \cdot (2\underline{i} + \underline{j} - \underline{k}) \times (\underline{j} + \underline{k})$.

Are these three vectors coplanar? Justify your answer.

2. (a) Show that the vector equation of the straight line through the point A in the direction of the vector \underline{b} can be written in the form $\underline{r} = \underline{a} + \lambda \underline{b}$, where λ is a parameter and \underline{a} is the position vector of A with respect to the origin O.

Let the vector equation of two straight lines l_1 and l_2 be given by the equations

$$\underline{r} = 2\underline{a} + \lambda(\underline{b} - 3\underline{a})$$
 and $\underline{r} = 3(\underline{a} - \underline{b}) - \mu(\underline{a} + \underline{b}),$

where \underline{a} and \underline{b} are non-collinear vectors.

- (i) Find the position vector of P which is the point of intersection of lines l_1 and l_2 .
- (ii) Q is the point on l_1 when $\lambda=1$ and R is the point on l_2 when $\mu=1$. If PQRS is a parallelogram, then find the vector equations of the lines QS and RS and also the position vector of the point S.
- (b) Obtain the vector equation of the line joining the points (1, -2, 1) and (0, 3, -2).

Continued....

- 3. (a) Find the equation of the plane passing through the points (2,2,2), (3,1,1) and (6,-4,6). Also find the perpendicular distance from the point (2,-1,1) to the plane.
 - Show that the equation of the plane passing through the origin and parallel to the vectors $\underline{i} + 2\underline{j} + 3\underline{k}$ and $2\underline{i} \underline{j} \underline{k}$ is $\underline{r} = (t + 2s)\underline{i} + (2t s)\underline{j} + (3t s)\underline{k}$, where s and t are scalar parameters.
 - (c) Find the vector equation of the plane passing through the point (2,3,-1) and perpendicular to the vector $3\underline{i} 4\underline{j} + 7\underline{k}$. Find the length of the perpendicular from the origin to the plane.
- 4. (a) A particle moves along the curve $= t^3 + 1$, $y = t^2$, z = 2t + 5, where t is the time. Find the components of its velocity and acceleration at t = 1 in the direction $\underline{i} + \underline{j} + 3\underline{k}$.
 - (b) Let the position vector of a particle be $\underline{r} = \underline{a} \cos \omega t + \underline{b} \sin \omega t$. Show that
 - (i) $\underline{r} \times \frac{d\underline{r}}{dt} = \omega(\underline{a} \times \underline{b})$
 - (ii) $\frac{d^2\underline{r}}{dt^2} = -\omega^2\underline{r},$

where ω is a constant and \underline{a} and \underline{b} are constant vectors.

- (c) The acceleration of a particle at any time t is given by $e^t \underline{i} + e^{2t} \underline{j} + \underline{k}$. Show that the velocity of the particle at t = 0 is $\underline{i} + \underline{j}$.
- 5. (a) Write down Serret-Frenet formulae.

Prove that Serret-Frenet formulae can be written in the form

$$\frac{d\underline{t}}{ds} = \underline{\omega} \times \underline{t}$$

$$\frac{d\underline{n}}{ds} = \underline{\omega} \times \underline{n}$$

$$\frac{d\underline{b}}{ds} = \underline{\omega} \times \underline{b}$$

in the usual notation . Here $\underline{\omega}$ is a vector to be determined.

(b) Find the curvature and the torsion of the curve $x = 2 \log t$, y = 4t, $z = 2t^2 + 1$.

Continued....

- 6. (a) Prove that
 - (i) $grad(\underline{a} \cdot \underline{r}) = \underline{a}$
 - (ii) $grad[\underline{r} \ \underline{a} \ \underline{b}] = \underline{a} \times \underline{b}$, in the usual notation, where \underline{a} and \underline{b} are constant vectors.
 - (b) Find $\operatorname{div} \underline{F}$, where $\underline{F} = (x + 3y)\underline{i} + (y 3z)\underline{j} + (x 2z)\underline{k}$. Hence determine whether \underline{F} is solenoidal.
 - (c) Show that the vector function $\underline{F} = (\sin y + z)\underline{i} + (x\cos y z)\underline{j} + (x y)\underline{k}$ is irrotational. Hence find a scalar function ϕ such that $\underline{F} = \nabla \phi$.
- 7. (a) Prove, in the usual notation, that
 - (i) $grad(r^n) = nr^{n-2}\underline{r}$
 - (ii) $div(\phi A) = \phi div A + \nabla \phi \cdot A$
 - (iii) $curl(\phi \underline{A}) = \phi \ curl \underline{A} + \underline{\nabla} \phi \times \underline{A}.$
 - (b) If r and r have their usual meanings, show that
 - (i) $div(r^n r) = (n+3)r^n$
 - (ii) $curl(r^n\underline{r}) = \underline{0}$
 - (iii) $div\left(\frac{\underline{r}}{r^3}\right) = 0.$
- 8. (a) State the divergence theorem.

Show that $\frac{1}{3}\int_{S} \underline{r} \cdot d\underline{S} = V$, where V is the volume enclosed by the surface S.

- (b) Using the divergence theorem, evaluate $\int_S \underline{F} \cdot d\underline{S}$, where $\underline{F} = 4xz\underline{i} y^2\underline{j} + yz\underline{k}$. Here S is the surface of the cube x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- Verify the Stoke's theorem for the function $\underline{F} = x \left(x \underline{i} + y \underline{j} \right)$ integrated around the square in the plane z = 0 whose sides are along the lines x = 0, x = a, y = 0, y = a.

