

කැලණිය විශ්වවිදාහලය -ශී ලංකාව University of Kelaniya-Sri Lanka

බාහිරවිභාග අංශය

External Examinations Branch

විදන පීඨය - Faculty of Science විදනාවේදී (සාමානා) උපාධි පුථම පරීකෳණය (බාහිර) - 2008 හා 2009 2010 ඔක්තෝබර්

Bachelor of Science (General) Degree First Examination (External) 2008 & 2009 October -2010

APPLIED MATHEMATICS

AMAT E1015 - Vector Algebra and Vector Analysis

No. of Questions: Eight (08) No. of Pages: Three (03) Time: Three (03) hrs

Answer Six (06) Questions only.

- 01. Let the coordinates of four points A, B, C and D are (-6,1,6), (6,-2,3), (-2,-3,-1) and (-5,-9,-7) respectively, with respect to mutually perpendicular axes.
 - i. Show that the points A, B and D lie on the surface of a sphere with centre C.
 - ii. Find the coordinates of the point E such that a diameter of the sphere is DCE.
 - iii. Show that $B\hat{C}A$ is a right angle and $B\hat{C}E = E\hat{C}A$.
 - iv. Show that the diameter DCE does not lie on the plane of the triangle ABC.
- 02. Let A, B, C and D are four points with rectangular Cartesian coordinates (0,1,2), (3,0,1), (4,3,6) and (2,3,2) respectively.

Find,

- i. the area of the triangle ABC,
- ii. the perpendicular distance from the point A to the line BC,
- iii. the volume of the tetrahedron ABCD,
- iv. the perpendicular distance from the point D to the plane ABC,
- v. the shortest distance between the lines AB and CD.
- 03. a. Find an equation of the plane containing the points, $P_1(2,-1,1)$, $P_2(3,2,-1)$, and $P_3(-1,3,2)$.
 - b. Given that $3\underline{i} + \underline{j} + 2\underline{k}$ and $\underline{i} 2\underline{j} 4\underline{k}$ are the position vectors of the points P and Q respectively.
 - i. Find an equation of the plane passing through Q and perpendicular to the line PQ.
 - ii. What is the distance to the plane above from the point (-1,1,1)?

Continued...

- 04. a. A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5, where t is time. Find the components of velocity and acceleration of the particle in the direction $\underline{i} + \underline{j} + 3\underline{k}$ at time t = 1.
 - b. If $\underline{r} = \underline{a}\cos(\omega t) + \underline{b}\sin(\omega t)$, show that

i.
$$\underline{r} \times \frac{d\underline{r}}{dt} = \omega(\underline{a} \times \underline{b})$$
,

ii.
$$\frac{d^2\underline{r}}{dt^2} = -\omega^2\underline{r} ,$$

where \underline{a} , \underline{b} , ω being constants.

- 05. a. Sketch the space curve $x = 3\cos t$, $y = 3\sin t$, z = 4t and find the followings.
 - i. the unit tangent T,
 - ii. the principal normal N, curvature κ and radius of curvature ρ ,
 - iii. the binormal B, torsion τ and radius of torsion σ .
 - b. Show that the radius of curvature of the curve with parametric equations x = x(s), y = y(s), z = z(s) is given by

$$\rho = \left[\left(\frac{d^2 x}{ds^2} \right)^2 + \left(\frac{d^2 y}{ds^2} \right)^2 + \left(\frac{d^2 z}{ds^2} \right)^2 \right]^{-\frac{1}{2}}.$$

- 06. a. i. Prove that $\operatorname{grad} f(\underline{r}) \times \underline{r} = \underline{0}$.
 - ii. If $f = (\underline{a} \times \underline{r}) r^n$ show that $\operatorname{div} f = 0$ and $\operatorname{curl} f = (n+2) r^n \underline{a} n r^{n-2} (\underline{a} \cdot \underline{r}) \underline{r}$.
 - b. A vector \underline{V} is called irrotational if $\underline{\nabla} \times \underline{V} = \underline{0}$. Find constants a,b,c so that $\underline{V} = (x+2y+az)\underline{i} + (bx-3y-z)\underline{j} + (4x+cy+2z)\underline{k}$ is irrotational.

Continued...

07. a. Show that

i.
$$grad(\phi \psi) = \phi grad\psi + \psi grad\phi$$
,

ii.
$$div(\phi \underline{u}) = \phi div(\underline{u}) + grad(\phi)\underline{u}$$
,

iii.
$$curl(\phi \underline{u}) = \phi curl(\underline{u}) + grad(\phi) \times \underline{u}$$
.

b. Let \underline{a} be a constant vector, \underline{r} be the position vector of a point (x, y, z) with respect to a origin O and $r = |\underline{r}|$. Show that

i.
$$\underline{\nabla} \cdot \frac{\underline{r}}{r^3} = \underline{0}$$
,

ii.
$$\operatorname{curl} \frac{\underline{a} \times \underline{r}}{r^3} = -\frac{\underline{a}}{r^3} + \frac{3\underline{r}}{r^5} (\underline{a} \cdot \underline{r})$$
,

iii.
$$grad\left(\frac{\underline{a} \cdot \underline{r}}{r^3}\right) + curl\left(\frac{\underline{a} \times \underline{r}}{r^3}\right) = \underline{0}$$
.

08. a. Write down the divergence theorem.

Show that $\int_{S} (ax\underline{i} + by\underline{j} + cz\underline{k}) . d\underline{a} = \frac{4}{3}\pi(a+b+c)$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$.

b. If \underline{F} is normal to each point on the surface S, show that $\int_V curl \underline{F}.dV = \underline{0}$.