

University of Kelaniya- Sri Lanka Faculty of Science

Centre for Distance & Continuing Education Bachelor of Science (General) Degree First Examination-External

December 2024

PURE MATHEMATICS | PMAT 16522- Matrix Algebra

No. of Questions: Five (05)

No. of Pages: Two (02)

Time: Two (02) hours

Answer only FOUR (04) questions.

1. (a) Let
$$A = \begin{bmatrix} -2 & -1 \\ 1 & 0 \\ 3 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 3 \\ 2 & 0 \\ -4 & -1 \end{bmatrix}$. Solve the matrix equation $2A + 4B = -2X$ for matrix X .

(b) Prove that if A and B are $n \times n$ skew-symmetric matrices, then A + B is skew-symmetric.

(c) i. Find A provided that $(2A)^{-1} = \begin{bmatrix} 2 & 4 \\ -3 & 2 \end{bmatrix}$.

ii. Find the inverse of the matrix A where $A = \begin{bmatrix} 2 & -17 & 11 \\ -1 & 11 & -7 \\ 0 & 3 & -2 \end{bmatrix}$.

2. (a) Factor the following matrix into a product of elementary matrices.

$$A = \begin{bmatrix} 1 & -2 & 0 \\ -1 & 3 & 0 \\ 0 & 2 & 1 \end{bmatrix}.$$

(b) Find value(s) of k such the following system of linear equations,

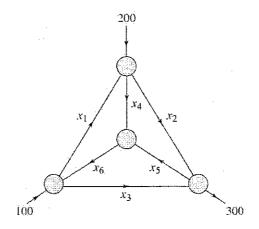
$$kx + 2ky + 3kz = 4k$$
$$x + y + z = 0$$
$$2x - y + z = 1,$$

- i. has a unique solution, and
- ii. have infinitely many solutions.
- (c) Find value(s) of k such the following system of linear equations has no solution,

$$x + ky = 2$$
$$kx + y = 4.$$

Continued.

3. (a) The flow of traffic (in vehicles per hour) through a network of streets is shown in the following figure.



- i. Solve the system for the traffic flow represented by x_i , $i = 1, 2, \dots, 6$.
- ii. Find the traffic flow when $x_3 = 100, x_5 = 50$, and $x_6 = 50$.
- (b) Solve the following system of linear equations using Cramer's Rule:

$$2x + y - z = 3$$
$$x + z = 2$$
$$x + y = 1$$

4. (a) Using the properties of determinants, show that

$$\begin{vmatrix} a & b & c \\ b+c & c+a & a+b \\ a^2 & b^2 & c^2 \end{vmatrix} = -(a-b)(b-c)(c-a)(a+b+c).$$

- (b) Let A = (1, 2) and B = (4, 6) be two points. Using a determinant, find the equation of the line passing through the points A and B.
- (c) Determine whether the vectors $v_1=(1,-2,0), v_2=(-1,3,1), v_3=(0,-1,2)$ are linearly dependent or not.
- (d) Let $A = \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix}$. Show that for all $k \in \mathbb{R}$, the matrix A + kI is non singular.
- 5. (a) Let A be a square matrix of size n with the property $A^2 = 3A$. Show that the only possible eigenvalues of A are 0 and 3.

(b) Let
$$A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix}$$
.

- i. Find the characteristic equation of A.
- ii. Show that $\lambda = 5$ is an eigenvalue of A.
- iii. Find the other eigenvalue(s) of A and all corresponding eigenvectors of A.
- iv. Is A diagonalizable? If so, find matrices P and D with $P^{-1}AP = D$.