

University of Kelaniya – Sri Lanka Centre for Distance & Continuing Education

Bachelor of Science (General) External First year First semester examination - 2019

(New Syllabus)
2022 August
Faculty of Science

PURE MATHEMATICS PMAT 16522 – Matrix Algebra

No. of Questions: Five (05) No. of Pages: Three (03) Time: Two (02) hours Answer Four (04) Questions Only.

01. (a) Let
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -2 & -1 \\ -1 & 5 & 6 \\ 5 & -4 & 5 \end{pmatrix}$. Use elementary row operations to find A^{-1} and B^{-1} if they exist.

(b) Let
$$A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} x & y \\ y & x \end{pmatrix}$ and $C = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$. If $AB = CA$, find x and y in terms of a and b .

- (c) Let A and B be two square matrices of same order.
 - (i) In the usual notations, show that

$$(AB)^{-1} = B^{-1}A^{-1}$$

(ii) If B is symmetric show that

$$(A^T - B)^T + C(B^{-1}C)^{-1} = A$$

Continued...

02. Consider the system of linear equations

$$x-y-z = 3$$

$$3x + 2y + \lambda z = 8$$

$$2x - 3y - z = \mu$$

- For what values of λ and μ , the system has (a)
 - (i) no solutions,
 - (ii) unique solutions,

and

- (iii) infinitely many solutions?
- (b) Find the solutions of the linear system for

 - (i) $\lambda = 0$ and $\mu = 3$, (ii) $\lambda = -8$ and $\mu = \frac{31}{5}$
- 03. Nimal invested Rs 50,000 in three bank saving accounts A, B and C. After one year, he received a total of Rs 3,500 in simple interest from the three investments. The saving accounts A, B and C paid interest rates 6%, 7% and 8% annually, respectively. There was Rs 6,000 more invested in the account A than in the accounts B and C.

Let

x = The amount of money invested in the saving account A.

y = The amount of money invested in the saving account B.

z = The amount of money invested in the saving account C.

- Setup a system of linear equations to describe Nimal's portfolio. (i)
- (ii) Write the system of equation in part (i) in matrix form.
- Use Gauss-Jordan elimination method to find the amount of money Nimal (iii) invested in each account.
- 04. (a) Use elementary row operations and the properties of determinants to show that

(i)
$$\begin{vmatrix} a + x^3 & b + x^2 & c + x \\ a + y^3 & b + y^2 & c + y \\ a & b & c \end{vmatrix} = xy(y - x)(a + b(x + y) + cxy).$$

(ii)
$$\begin{vmatrix} (b+c)^2 & b^2 & c^2 \\ a^2 & (c+a)^2 & c^2 \\ a^2 & b^2 & (a+b)^2 \end{vmatrix} = abc(a+b+c)^2.$$

Continued...

(b) Consider the following system of linear equations:

$$5x - y + 4z = -2$$

 $2x + 2y - 3z = -1$
 $-3x - y + kz = 5$

- (i) Write the above system in matrix form $A\underline{x} = \underline{b}$.
- (ii) Evaluate det(A).
- (iii) Hence, find the value of k which the system does not have a unique solution.
- (iv) If k = 4, use Cramer's rule to find the solution of the linear system.
- 05. (a) (i) If A is an invertible matrix, prove that A and A^{-1} have the same eigenvectors and find the relationship corresponding to the eigenvalues.
 - (ii) Prove that an eigenvalue of a square matrix is zero if and only if the matrix is noninvertible.
 - (b) Let $A = \begin{pmatrix} 3 & 3 & 1 \\ 3 & 1 & 3 \\ 1 & 3 & 3 \end{pmatrix}$.
 - (i) Show that the characteristic equations of A is given by $(\lambda 7)(\lambda 2)(\lambda + 2) = 0$
 - (ii) Find the eigenvectors of A corresponding to each eigenvalues.
 - (iii) Find a nonsingular matrix P and a diagonal matrix D such that $P^{-1}AP = D$.

in the first of the control of the first of the control of the con		The second section is a second
	W	

