

UNIVERSITY OF KELANIYA - SRI LANKA

FACULTY OF SCIENCE

Bachelor of Science (External) Degree Examination, August 2022

Academic Year 2019/2020 - Semester I

PURE MATHEMATICS

PMAT 16513 - Discrete Mathematics I

No. of Questions: Six (06)

No. of Pages: Two (02)

Time Allowed: Two & half (2 1/2) hrs

Answer Five (05) Questions Only

- 1. (i) Let p, q, and r be three simple propositions.
 - Construct a truth table for the compound proposition $(\sim p \leftrightarrow \sim q) \rightarrow (q \leftrightarrow r)$ (a)
 - (b) Show that $\sim p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$ are logically equivalent.

[40 marks]

- Determine the truth value of each of the following statements, if the domain consists of all real (ii) numbers.

 - (a) $\exists x(x^3 = -1)$ (b) $\exists x \forall y(y = x^2 + 2x + 1)$ (c) $\exists x \exists y(x^2 + y^2 = 2xy)$

[30 marks]

Formalize the following and by writing truth tables for premises and conclusions, determine (iii) whether the following argument is valid. "If Jane can sing or Davide can play, then I will buy the compact disc. Jane cannot sing.

Therefore, I will buy the compact disc." You may assume that p is "Jane can dance", q is "David can play", and r is "I will buy a compact set".

[30 marks]

- **2.** (i) Let A, B and C be three non-empty sets. By stating the laws on operations on sets, prove (a) that
 - (α) $(A \setminus B) \setminus C = A \setminus (B \cup C).$
 - $(\beta) \quad (A \cup B) \backslash C = (A \backslash C) \cup (B \backslash C).$

[25 marks]

- Prove that, in the usual notations, $A^c \setminus B = A^c \cap B^c$ by showing that each set is a subset (b) of the other. [25 marks]
- Let A, B and C be three non-empty sets. Prove or disprove that if $A \times B = A \times C$, then (ii) B = C. [25 marks]
- Let A, B and C be three non-empty sets. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$. (iii) [25 marks]
- Determine whether the following function is one-one **3.** (i)

$$f:\left[-\frac{1}{2},\frac{1}{2}\right]\to\mathbb{R}:f(x)=\frac{x}{1+x^2}.$$

[15 marks]

(ii) Show that the following function is onto. $f: \mathbb{R} \to \mathbb{R} : f(x) = 5x - 2 \text{ for } \forall x \in \mathbb{R}$

[15 marks]

- Consider the mapping $f: X \longrightarrow Y$, where X and Y are non-empty sets. (iii)
 - Write down conditions that should satisfy by f for the existence of the inverse of f.

(b) Find the inverse of the function $f(x) = \sqrt[4]{6x - 7}$.

[40 marks]

(iv) The functions f and g are given by

$$f(x) = \frac{2x+3}{2x-3}, \quad x \in \mathbb{R}, x \neq \frac{3}{2}, \qquad g(x) = x^2 + 2, x \in \mathbb{R}$$

Find

- (a) the range of g(x)
- (b) an expression for $f \circ g(x)$
- (c) an expression for $f^{-1}(x)$

[30 marks]

- 4. (i) Let B is Boolean algebra and $a, b \in B$. Then prove the followings:
 - (a) a'b' + ab + a'b = a' + b.
 - (b) (a'b'+c)(a+b)(b'+ac)'=a'bc.
 - (c) a = 0 if and only if $b = a \cdot b' + a' \cdot b$ for all b.

[40 marks]

- (ii) Write down the dual of $(x \cdot (x + y \cdot 0))' = x'$ for all x and y in a Boolean algebra. [10 marks]
- (iii) A relation R on \mathbb{Z} is defined as xRy if and only if 3x 5y is even.
 - (a) Prove that R is an equivalence relation on \mathbb{Z} .
 - (b) Determine the two equivalence classes of R.

[50 marks]

- 5. (i) Define the sequence $a_1, a_2, a_3, ...$ by $a_1 = 1$, $a_2 = 2$, and $a_n = 2a_{n-1} a_{n-2}$ for all $n \ge 3$. By using strong mathematical induction prove that $a_n = n$ for all $n \in \mathbb{N}$. [30 marks]
 - (ii) By using the method of contradiction, prove that for $a, b \in \mathbb{Z}$ and $a \ge 2$, either a not divides b or a not divides b + 1. [25 marks]
 - (iii) By using the method of contrapositive, show that for $x, y \in \mathbb{R}$, if $y^3 + yx^2 \le x^3 + xy^2$, then $y \le x$. [25 marks]
 - (iv) By using the method of proof by cases, show that if n is an even integer, then n = 4k or n = 4k 2 for some integer k. [20 marks]
- 6. (i) Let D_n be a set of divisors of n, where $n \in \mathbb{N}$. Define operations +, \bullet and ' as $a + b = lcm\{a,b\}$, $a \cdot b = \gcd\{a,b\}$, $a' = \frac{n}{a}$. Prove that D_8 is not a Boolean algebra. [35 marks]
 - (ii) (a) Find the output of the following combinatorial circuit in terms of inputs x, y and z.

(b) Draw a combinatorial circuit by simplifying the Boolean expression obtained in part (a).

[35 marks]

(iii) Find the sum-of-products expansion for the Boolean function $F(x, y, z) = \bar{x} + xy + yz$.

[30 marks]

-----End of the question paper-----