



University of Kelaniya - Sri Lanka
Center for Distance & Continuing Education
Bachelor of Science (General) External
First year first semester examination - 2024 (September 2025)
(New Syllabus)
Faculty of Science

Applied Mathematics
AMAT 16513 - Vector Analysis

No.of Questions: Six(06) No.of Pages: Three(03) Time: Two & half($2\frac{1}{2}$)hrs
Answer Five(05) Questions Only.

1. (a) Find the equation of the sphere that passes through the point $(3, 2, 4)$ and has center $(7, 8, 2)$.
(b) Find the vector \vec{b} whose scalar projection onto $\vec{a} = \langle 3, 0, 2 \rangle$ is 3.
(c) Given four points $P = (3, 0, 1)$, $Q = (-1, 2, 5)$, $R = (5, 1, -1)$, and $S = (0, 4, 2)$, compute the volume of the parallelepiped formed by the adjacent edges PQ , PR , and PS .
(d) Find the equation of the plane that contains the line $x = 1 + t$, $y = 2 - t$, $z = 4 - 3t$ and is parallel to the plane $5x + 2y + z = 1$.
(e) Let two non-zero vectors \vec{v}_1 and \vec{v}_2 have magnitudes w and z , respectively. Given that $x = |\vec{v}_1 \times \vec{v}_2|$ and $y = \vec{v}_1 \cdot \vec{v}_2$. Show that $x^2 + y^2 = w^2 z^2$.

2. (a) Sketch the surface $y = 2x^2 + z^2$ by using traces and intercepts.
(b) Suppose \vec{A} , \vec{B} are vectors. Prove that
$$\vec{A} \times \frac{d^2 \vec{B}}{dt^2} - \frac{d^2 \vec{A}}{dt^2} \times \vec{B} = \frac{d}{dt} \left(\vec{A} \times \frac{d \vec{B}}{dt} - \frac{d \vec{A}}{dt} \times \vec{B} \right).$$

(c) A particle moves in space under the influence of an acceleration given by $\vec{a} = \langle 6t, \cos t, e^t \rangle$. If the initial velocity of the particle at $t = 0$ is $\vec{v}(0) = \langle 2, 1, 0 \rangle$, find the velocity $\vec{v}(t)$ at any time t .
(d) In the usual notation, derive the formula for tangent and normal components of the acceleration $a_T = \frac{\vec{r}'(t) \cdot \vec{r}''(t)}{|\vec{r}'(t)|}$ and $a_N = \frac{|\vec{r}'(t) \times \vec{r}''(t)|}{|\vec{r}'(t)|}$ respectively.

Continued...

3. (a) The position vector of moving particle is $\vec{r}(t) = \langle t, 4 \cos t, 4 \sin t \rangle$.

- (i) Find a unit tangent vector \vec{T} , the unit normal vector \vec{N} and the binormal vector \vec{B} of the particle, in the direction of motion.
- (ii) Find the curvature.
- (iii) Obtain the equation of the osculating plane and normal plane at $t = \pi$.

(b) Show that $\frac{d\vec{N}}{ds} + \kappa \vec{T}$ is perpendicular to both \vec{T} and \vec{N} , where \vec{T} is the unit tangent vector and \vec{N} is the unit normal vector.

Hint: Consider the Frenet- Serret Formula $\frac{d\vec{N}}{ds} = -\kappa \vec{T} + \tau \vec{B}$, where \vec{B} is the binormal vector. Also κ and τ are curvature and torsion respectively and consider them as constants.

4. (a) Evaluate $\int_C xy^3 ds$, where C is the arc of the circle $x^2 + y^2 = 9$ lying in the first quadrant.

(b) Given the vector field $\vec{F} = \langle 2xy, x^2 + 3y^2 \rangle$.

- (i) Show that \vec{F} is a conservative vector field.
- (ii) Is vector field \vec{F} irrotational?
- (iii) Find a potential function $f(x, y)$ such that $\vec{F} = \nabla f$.
- (iv) Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where C is the curve $\vec{r}(t) = (7t + t^{2025}) \hat{i} + \frac{t}{\sqrt{2-t}} \hat{j}$ with $0 \leq t \leq 1$.

(c) Evaluate $\oint \vec{F} \cdot d\vec{r}$, where $\vec{F} = \langle \sin^{-1}(x^3 + 1) + \ln(x + 3), \tan y + \frac{1}{2}x^2 \rangle$ and C is the boundary of the region enclosed by the curves $y = x^2$, $y = 3$ and $x = 0$ with counterclockwise orientation.

Continued...

5. (a) Find the gradient vector field of the function $f(x, y, z) = x \cos(yz)$.

(b) Evaluate the surface integral $\iint_S z \, dS$ where S is the upper hemisphere $x^2 + y^2 + z^2 = 16$, $z \geq 0$ and has upward orientation.

(c) (i) State the Stokes' theorem.

(ii) Use Stokes' theorem to evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = z\hat{i} + x\hat{j} + y\hat{k}$ and S is the part of the plane $x + y + z = 1$, that lies in the first octant ($x, y, z \geq 0$), oriented upward. Let C be the boundary curve of the S , with the vertices $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$ oriented counterclockwise as viewed from above.

6. (a) Prove

(i) $\nabla \times (\nabla \phi) = 0$ ($\text{Curl grad } \phi = 0$), (ii) $\nabla \cdot (\nabla \times \vec{F}) = 0$ ($\text{div Curl } \vec{F} = 0$),

where $\vec{F} = F_1 \hat{i} + F_2 \hat{j} + F_3 \hat{k}$ is a vector, ϕ is a scalar function and assume both ϕ and \vec{F} have continuous second partial derivatives.

(b) (i) State the Divergence theorem.

(ii) Use Divergence theorem to calculate the surface integral of the vector field $\vec{F} = xy^2 \hat{i} + yz^2 \hat{j} + zx^2 \hat{k}$, where S is the surface of the solid bounded by the cylinder $x^2 + y^2 = R^2$ and the planes $z = 0$ and $z = h$. Let R and h be positive constants.

— End of Examination —