UNIVERSITY OF KELANIYA – SRI LANKA Centre for Distance and Continuing Education

Bachelor of Science (General) External Degree Examination - 2023 June 2025 Faculty of Science

APPLIED MATHEMATICS AMAT 17543- Numerical Methods I

No. of Questions: Six (06) No. of Pages: Three (03) Time: Two & half $\left(2\frac{1}{2}\right)$ hrs

What is meant by stability in numerical analysis?

Answer Five (05) Questions only.

Programmable calculators are not allowed.

(b) Let E_a and E_b are the absolute errors of two numbers a and b respectively. Assuming that $\frac{E_b}{b} \ll 1$, show that the absolute error in a/b is approximately given by $\frac{a}{b} \left(\frac{E_a}{a} - \frac{E_b}{b} \right)$. [20 marks]

(c) Let $f(x) = 2x \cos(2x) - (x-2)^2$.

1.

(a)

- (i) Find the third order Taylor polynomial $P_3(x)$ about $x_0 = 0$, and use it to approximate f(0.4). [50 marks]
- (ii) Use the error formula in Taylor's Theorem to find an upper bound for the error $|f(0.4) P_3(0.4)|$. [25 marks]
- 2. (a) (i) Define the term "ill-conditioned problem". [10 marks]
 - (ii) Give an example of a polynomial that has ill-conditioned zeros.

[10 marks]

[05 marks]

(b) Show that the system

$$\begin{pmatrix} 0.96 & -1.23 \\ 4.91 & -6.29 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -0.27 \\ -1.38 \end{pmatrix}$$
 is ill-conditioned. [30 marks]

(c) (i) Give two reasons to consider pivoting strategy when solving a system of linear equations using the method of Gaussian elimination.

[15 marks]

(ii) Solve the following linear system of equations using the method of Gaussian elimination with pivoting. [35 marks]

$$-2x_2 + 2x_3 = 4$$
, $x_1 - 2x_2 + x_3 = 3$, $-2x_1 + 2x_2 + 4x_3 = 0$

Continued...

- 3. (a) (i) Derive the Newton-Raphson formula graphically for finding an approximate solution to non-linear equations of the type f(x) = 0. [20 marks]
 - (ii) By applying the Newton-Raphson method to $f(x) = x^2 \frac{1}{c}$, obtain an iterative formula, where c is any positive number. [10 marks]
 - (iii) Using the iterative formula obtained in (ii) above show that $e_i = \frac{e_{i-1}^2}{2x_{i-1}}$, where $e_i = x_i \frac{1}{\sqrt{c}}$, i = 0,1,2,...

Hence show that the iterative formula obtained in (ii) is quadratically convergent. [30 marks]

- (iv) Estimate the value of $\sqrt{2}$ to four decimal places using the Newton-Raphson method. (Use three iterations). [20 marks]
- (b) The operator Δ is defined as follows. $\Delta f(x) = f(x+h) f(x), \text{ where } h \text{ is the interval of differencing.}$ Show that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)}\right].$ [20 marks]
- 4. (i) Derive the normal equation for the least squares polynomial of degree one. [50 marks
 - (ii) The number of radioactive nuclei in the material at time t, N(t) is given by, $N(t) = N_0 e^{-\lambda t}$, where N_0 is the initial number of radioactive nuclei and λ is a constant. Use the data given in the following table and the method of least squares to find the values N_0 and λ .

t(time)	1	2	3	4	5	6
N	4887	3757	3923	2742	2655	2001

[50 marks]

5. (a) Suppose that the values of the function f at the points x_0, x_1, x_2, x_3, x_4 are known.

Obtain the 5-point Lagrange's interpolation formula in the form

 $P(x) = \sum_{i=0}^{4} L_i(x) f(x_i)$, where each $L_i(x)$ is a quadratic polynomial in x.

[35 marks]

Continued...

(b) (i) Use the data given in the following table to find the 4th order Lagrange's interpolation polynomial. [35 marks]

i	0	1	2	3	4
x_i	1	2	3	4	5
y_i	11.6	16.2	16.8	13.5	7.3

- (ii) Also use the Newton's method to find maximum value of y. [30 marks]
- 6. (a) Explain the method of fixed-point iteration for finding a root of f(x) = 0. [25 marks]
 - (b) (i) Show that $f(x) = \sin(x^2) = 0$ can be expressed as $x = g_1(x)$, where $g_1(x) = \frac{\sin(x^2)}{x^2} + x.$

Use fixed-point iteration theorem to show that g_1 has a unique fixed-point in [1.7,1.8]. [25 marks]

- (ii) Apply fixed-point iteration method to find the fixed-point of g_1 . Take $x_0 = 2$ and impose a tolerance of 10^{-4} . [30 marks]
- (iii) Now replace $g_1(x)$ by $g_2(x) = \frac{\sin(x^2)}{x} + x$.

Is it possible to have a fixed-point to g_2 ? Explain your answer.

[20 marks]

---- End of question paper ----

