

University of Kelaniya - Sri Lanka Center for Distance & Continuing Education Bachelor of Science(External) First Year First Semester- 2023 2024-December Faculty of Science

Applied Mathematics AMAT 16513 - Vector Analysis

No.of Questions: Six(06) No.of Pages: Three(03) Time: Two & half $(2\frac{1}{2})$ hrs Answer Five(05) Questions Only

- 1. (a) Find the vector projection of $\vec{a} = \hat{i} 2\hat{j} + \hat{k}$ onto $\vec{b} = 4\hat{i} 4\hat{j} + 7\hat{k}$.
 - (b) Check whether the given vectors $\vec{u} = \hat{i} + 5\hat{j} 2\hat{k}$, $\vec{v} = 3\hat{i} \hat{j}$ and $\vec{w} = 5\hat{i} + 9\hat{j} + 4\hat{k}$ are coplanar or not. Justify your answer.
 - (c) Find the angle between two planes 3x + 4y = 0 and 2x + y 2z = 5. (Do not need to simplify the answer.)
 - (d) Let two non-zero vectors $\vec{v_1}$ and $\vec{v_2}$ have magnitudes w and z, respectively. Given that $x = |\vec{v_1} \times \vec{v_2}|$ and $y = \vec{v_1} \cdot \vec{v_2}$. Show that $x^2 + y^2 = w^2 z^2$.
 - (e) Find parametric equations for the line through (2,4,6) that is perpendicular to the plane x y + 3z = 7.
- 2. (a) A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$, where t is the time.
 - (i) Determine the velocity and acceleration of the particle at any time.
 - (i) Find the magnitude of the velocity and acceleration at t=0.
 - (b) A curve C is defined by parametric equation x = x(s), y = y(s), z = z(s), where s is length of C measured from fixed point on C. If \vec{r} is a position vector of any point on C, show that $\frac{d\vec{r}}{ds}$ is a unit vector tangent to C.

 [Hint: $(ds)^2 = (dx)^2 + (dy)^2 + (dz)^2$]
 - (c) Show that $\vec{A} \cdot \frac{d\vec{A}}{dt} = A \frac{dA}{dt}$ where \vec{A} is a vector and \vec{A} is the magnitude of the vector \vec{A} .

Continued...

3. (a) Let \vec{a} be a constant vector given by $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ and \vec{r} be a position vector of any point p with respect to the origin, given by $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$. Show that the followings in the usual notation.

(i)
$$\nabla \times (\vec{a} \times \vec{r}) = 2\vec{a}$$
 (ii) $\nabla (\vec{a} \cdot \vec{r}) = \vec{a}$

- (b) Determine the arc length of the curve $\vec{r}(t) = e^t \cos t \,\hat{i} + e^t \sin t \,\hat{j}$ between t = 0 and t = 1.
- (c) The position vector of moving particle is $\vec{r}(t) = \cos t \, (\hat{i} \hat{j}) + \sin t \, (\hat{i} + \hat{j}) + \frac{t}{2} \, \hat{k}$
 - (i) Find a unit tangent vector to the path of the particle, in the direction of motion.
 - (ii) Show that the curve traversed by the particle has constant curvature κ and find its value.
- (d) Show that $\frac{d\vec{N}}{ds} + \kappa \vec{T}$ is perpendicular to both \vec{T} and \vec{N} , where \vec{T} is the unit tangent vector and \vec{N} is the unit normal vector.

Hint: Frenet- Serret Formula $\frac{d\vec{N}}{ds} = -\kappa \vec{T} + \tau \vec{B}$ where \vec{B} is the binormal vector. Also κ and τ are curvature and torsion respectively and consider them as constants.

4. (a) Find constants a, b, c so that

$$\vec{v} = (x + 2y + az)\hat{i} + (bx - 3y - z)\hat{i} + (4x + cy + 2z)\hat{k}$$

is irrotational.

- (b) Evaluate the surface integral $\iint_S (x+y^2)dS$ is the part of the plane x+y+z=2 in the first octant and has upward orientation.
- (c) (i) State the Stokes' Theorem.
 - (ii) Use Stokes' Theorem to evaluate $\int_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = x^2 z \ \hat{i} yz\hat{k}$ and C is the curve intersection of the plane z = 3, and the cylinder $x^2 + y^2 = 25$, oriented counterclockwise.

Continued...

- 5. (a) Evaluate $\int_C \sqrt{1+y^2} ds$ where C is the curve $y = e^x$ from (0,1) to (1,e).
 - (b) Given the vector field $\vec{F} = \langle 2xe^y + 1, x^2e^y \rangle$
 - (i) Show that \vec{F} is a conservative vector field.
 - (ii) Find a potential function f(x, y) such that $\vec{F} = \nabla f$.
 - (iii) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ where C is the curve $\vec{r}(t) = 1 2t + 3t^{2024} \hat{i} + \frac{(1-t)}{\sqrt{4+t}} \hat{j}$ with $0 \le t \le 1$.
 - (c) Evaluate $\oint \vec{F} \cdot d\vec{r}$, where $\vec{F} = \langle x \tan^{-1} x \sqrt{\ln(1+x)} \rangle$, $\frac{5}{2}x^2 + \sin y^3 \rangle$ and C is the boundary of the region enclosed by the curves $y = x^3$, x = 2 and y = 0 with counterclockwise orientation.
- 6. (a) Prove
 - (i) $\nabla \times (\nabla \phi) = 0$ (Curl grad $\phi = 0$) (ii) $\nabla \cdot (\nabla \times \vec{A}) = 0$ (div Curl $\vec{A} = 0$)

where $\vec{A} = A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k}$ is a vector, ϕ is a scalar function and assume both ϕ and \vec{A} have continuous second partial derivatives.

- (b) Evaluate $\nabla \cdot (\vec{A} \times \vec{r})$ if $\nabla \times \vec{A} = 0$, where \vec{A} is a vector given by $\vec{A} = A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k}$ and \vec{r} is a vector given by $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.
- (c) (i) State the Divergence Theorem.
 - (ii) Use Divergence Theorem to calculate the surface integral of $\vec{F} = x^2 y \hat{i} + xe^z \hat{j} + z^2 \hat{k}$ across the surface of the box with vertices $(\pm 1, \pm 2, \pm 3)$.

— End of Examination —