

University of Kelaniya – Sri Lanka Centre for Distance & Continuing Education

Bachelor of Science (General) External First year second semester examination - 2019

(New Syllabus)

2023 March Faculty of Science

APPLIED MATHEMATICS

Vector Methods in Geometry - AMAT E 17532

No. of Questions: Fine (05)

No. of Pages: Three(03)

Time Allowed: Two(02)hrs

Answer Four (04) questions only.

01. (a) Determine the vector equation of the straight line passing through the point with position vector $\underline{i} - 3\underline{j} + \underline{k}$ and parallel to the vector $2\underline{i} - 3\underline{j} - 4\underline{k}$.

Express the vector equation of the straight line in standard cartesian form.

(b) Show that there is a point common to the two straight lines $\underline{r} = 3\underline{j} + 2\underline{k} + s\left(2\underline{i} + 2\underline{j} + 3\underline{k}\right)$ and $\underline{r} = -2\underline{i} + 2\underline{j} + 3\underline{k} + t\left(9\underline{i} - 3\underline{j} - 6\underline{k}\right)$, where s and t are parameters.

Determine the coordinates of the common point.

(c) Find the equation of the plane normal to the vector $\underline{i} + \underline{j}$ containing the line l with the equation $\underline{r} = \underline{i} + \underline{j} + \underline{k} + t \left(\underline{i} - \underline{j} - \underline{k}\right)$, where t is a parameter.

Find also the equation of the plane containing line l and point j.

Show that the angle between these planes is $\frac{\pi}{3}$.

Continued...

- 02. (a) State and prove the Serret-Frenet formulae.
 - (b) Consider the space curve $\underline{r} = \left(3 \cos \frac{s}{5}, 3 \sin \frac{s}{5}, \frac{4s}{5}\right)$.
 - (i) Find the unit tangent vector \underline{t} , unit principal normal vector \underline{n} and the unit binormal vector b at any point of the curve.
 - (ii) Obtain the equations of the rectifying and normal planes to the curve at the point corresponding to s = 1.
- 03. (a) Prove, in the usual notation, that the curvature κ and the torsion τ of a space curve r = r(t) can be written in the form

$$\kappa = rac{|\dot{\underline{r}} imes \dot{\underline{r}}|}{|\dot{\underline{r}}|^3}$$
 and $\tau = rac{\dot{\underline{r}} imes \dot{\underline{r}} \ddot{\underline{r}}}{|\dot{\underline{r}} imes \dot{\underline{r}}|^2}$,

where t is any parameter other than s.

(b) Consider the space curve $\underline{r} = (a(3t - t^3), 3at^2, a(3t + t^3))$, where a is a constant.

Show that the curvature κ and the torsion τ of the space curve are given by $\kappa = \tau = \frac{1}{3a(1+t^2)^2}.$

04. (a) Define, in the usual notation, the scale factors h_1, h_2, h_3 and the unit vectors $\underline{e_1}, \underline{e_2}, \underline{e_3}$ for a curvilinear coordinate system u_1, u_2, u_3 .

Let ϕ be a scalar function of the curvilinear coordinates u_1, u_2, u_3 .

In the usual notation, show that $grad \phi$ is given by

$$grad\ \phi = \underline{\nabla}\phi = \frac{1}{h_1}\frac{\partial\phi}{\partial u_1}\underline{e}_1 + \frac{1}{h_2}\frac{\partial\phi}{\partial u_2}\underline{e}_2 + \frac{1}{h_3}\frac{\partial\phi}{\partial u_3}\underline{e}_3.$$

- (b) The cartesian coordinates can be written in terms of spherical polar coordinates r, θ and ϕ as $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$.
 - (i) Obtain the scalar factors h_r , h_θ and h_ϕ .
 - (ii) Find the basis vectors \underline{e}_r , \underline{e}_{θ} and \underline{e}_{ϕ} .
 - (iii) Calculate $\underline{\nabla} \phi$ and $\underline{\nabla} \left(\frac{1}{r}\right)$.

Continued...

(c) In cylindrical coordinates, the position vector of any point can be written in the form

$$\underline{r} = \rho \; cos\phi \; \underline{i} \; + \rho \; sin \; \phi \; j + z\underline{k}.$$

Assume that the base vectors are given by $\underline{e}_{\rho} = \cos\phi \ \underline{i} + \sin\phi \ \underline{j}, \ \underline{e}_{\phi} = -\sin\phi \ \underline{i} + \cos\phi \ \underline{j} \ \text{and} \ \underline{e}_z = \underline{k}.$

Express the vector $\underline{A} = 2y\underline{i} - z\underline{j} + 3x\underline{k}$ in terms of cylindrical coordinates.

05. (a) A plane curve has been described by the parametric equations

$$x(t) = \sqrt{2t+4}$$
 and $y(t) = 2t+1$ for $-2 \le t \le 6$.

Eliminate the parameter *t* and sketch the resulting graph.

- (b) Skech the graph of polar equation $r = 1 2 \cos\theta$. Determine the type of the polar equation.
- (c) Write down the implicit form of the surface given by

$$\underline{r}(u,v) = 7\cos u\sin v\,\underline{i} + 7\sin u\sin v\,j + 7\cos v\,\underline{k}.$$

Hence identify the suface.

(d) Let the parametric form of a surface $\underline{r}(u, v)$ be

$$\underline{r}(u,v) = (u^2 - v^2)\underline{i} + (u+v)\underline{j} + uv\,\underline{k}.$$

Find the equation of the tangent plane to the surface at the point (1,2).

